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Short-period (1-10 umn) wigglers for free electron laser (FEL) applications have

been a subject of considerable interest. Tie use of such microwigglers permits higher

frequency radiation to be generated with a device which is more compact than one

employing wigglers of standard periodicity (typically 3-10 cm). This comes from the fact

that the radiation wavelength is proportional to the wiggler period and inversely

proportional to the square of the electron beam energy.

The MIT microwiggler program is part of the MIT/ATF collaborative effort to

produce a visible and ultraviolet free electron laser. It is a 70-period device consisting of

280 electromagnets wound on ferromagnetic cores. The wiggler [Figure 1] has an 8.8 mm

period, 4.2 mm gap, and produces a 0.5 msec long magnetic field pulse of 4 kG and at a

repetition rate of 3/4 Hz. There are four electromagnets in each period of the wiggler held

in place by a precisely formed aluminum rnatrix as illustrated in the top photograph of Fig.

1. A WR28 stainless steel waveguide runs through the center of the wiggler and acts as

the wiggler bore. The ends of the wiggler field profile have been tapered so as to produce

a smooth entry and exit for the electron beam. The entire system is energized by a

computer controlled capacitor bank.

Field amplitude tunabiiity, as a means of compensating for random field errors

resulting from imperfections in fabrication, becomes increasingly important at short
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wavelengths. Field amplitude tunability is also very useful if field tapering is desired; such

tapering is known to lead to greatly improved FEL efficiency. In our device, the field of

each half-period is independently adjustable via a novel tuning method by which a 0.12%

field amplitude uniformity has been achieved. As shown in Fig. 2, the before and after

field profiles demonstrate outstanding tun ability of this wiggler. Each one of the

electromagnets receives current from the bus bar through a resistive wire. By

manipulating the length of the wire, we can change the amount of current applied to each

magnet and thus tune the wiggler. An axially movab!e B magnetic field probe measures

the magnetic field. After the measurements are processed the lengths are adjusted to

achieve the desired uniformity. The field uniformity of 0.12% was achieved after only a

few iterations of this procedure.

We have installed the wiggler on Beamline #3 at the ATF rf linac. To date, we

studied the wiggler's incoherent emission using a 41 MeV beam. The emitted radiation

travels from the experimental hall into the FEL room through a series of light-tight fixtures

which incorporate a series of mirrors and lenses. The optical transport system is 12

meters in length with no magnification at the output and is optimized for operation for

wavelengths of 550 nm. A green HeNe laser is used to align the wiggler center and the

light transport optics. Inside the FEL room exists measuring equipment, such as

photomultipliers, a spectrometer, and oscilloscopes. All measurements and control

operations are conducted inside the FEL room.

The emitted radiation increases with wiggler strength as is illustrated in Fig. 3. The

intensity apparently increases linearly with magnetic field rather than as the square of the



field strength as expected However, this discrepancy may well be due to low signal to

noise and electron beam misalignment with the wiggler axis.

The spectrum of the spontaneously emitted light is illustrated in Figurc 4. The

spectrum has a long shoulder to the red side, which is an indication of the combined

effects of beam emittance and the finite solid angle of our light collection optics. After

improvements, we expect that such studies of spontaneous emission may well serve as a

useful dianostic of electron beam eminttance.

Installation of the optical cavity to achieve lasing will begin shortly. The

resonating cavity mirrors for the FEL are on hand. The cavity length will be 3.67m and

will be adjustable for tuning purposes. The parabolic cavity minors are 5" in diameter.

The ATF will produce a hundred 6 pscc pulses per macropulse. Outcoupling of the laser

light occurs at the upstream side of the wiggler where the light will be redirected to the

FEL room via the optical transport system.

Upgrade of the ATF and improved beam characteristics will yield higher brightness

and lower emittance leading to a vastly improved spectrum of the spontaneous emission.

Concurrent with the ATF modifications, improvements to the wiggler ame also underway.

These include making an improved capacitor bank, installing mounting tables and

resornance cavity mirrors, and optimizing the optical transport systems. We anticipate

lasing in the 550 nm range this year.

Detailed description of the completed microwiggler i.i given in the Appendix.
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Figure 2 Plots showing the magnitude of the peak amplitude of the individual half.periods in the magnet. The top

graph is she peak amplitude profile before tuning the magnet. The bottom is the peak amplitude profile after the

magnet was tuned.
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Figure 3 Plot of the spontaneous emission signal obtained with various w-alues of the wig8ler field
strength. The open circles correspond to data points taken, the dotted line is a best linear fit to the data.
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Figure 4 Measured spontaneous emission siSnal at various wavelengths. Data taken with an
electron beam energy of 40.86 MeV.
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A 70-PERIOD HIGH-PRECISION MICROWIGGLER FOR FREE ELECTRON
LASERS

R.Stoner' and G. Bekefi
Department of Physics and Research Laboratory of Electronics

Massachusetts Institute of Technolog,
Cambridge, MA 02139

ABSTRACT

We have designed, constructed, and operated a 70-period microwiggler for free
electrons lasers (FELs). The device is a pulsed ferromagnetic-core electromagnet with a
period of 8.8 mm, which generates an on-axis peak magnetic field of 4.2 kG. The pulses,
of 0.5 msec duration, are generated at a rate of 0.5 Hz. Each field peak is independently
tunable. We employed a novel tuning regimen to reduce the RMS spread in the peak
amplitudes to 0,12%, the lowest value thus far attained in a sub-cm-period periodic
magnetic field.

'Present address: Smithsonian Astrophysical Observatory, Cambridge, MA 02138



1. Introduction

Size and cost reduction of visible and UV wavelength FEL systems is necessary if

they are to become practical radiation sources. The use of a shott-period (1-10 mm)

microwiggler magnet permits higher frequency radiation to be generated with a device

which is more compact than one employing wigglers of the usual period (typically 3-10

cm).

Microwiggler design and construction pose very serious engineering challenges.

Mechanical tolerances of a given value become increasingly large in the fractional sense as

the size scale is reduced, leading to correspondingly increased fractional field errors. Also,

wiggler field strength falls off exponentially as the ratio of the separation between wiggler

halves (the "gap") to the wiggler period. Therefore, maintaining a gap adequate to pass an

electron beam (a few mm) while reducing the wiggler period results in significant field

magnitude reduction unless corrective measures are taken. In spite of these difficulties,

numerous groups have investigated short-period wigglers. A variety of techniques have

been proposed and studied, some of which are: samarium-cobalt permanent magnet

grooved slabs [1], ferromagnetic core stacks with interleaved copper sheets [2], high

current pulsed-wire designs [3], electromagnet helical microwigglers [4, 5], staggered

ferromagnetic core arrays imn zrsed in a solenoidal field [6], superconducting

ferromagnetic core designs [7], and hybrid samarium cobalt and iron microwigglers [8]. A

common characteristic of most of these approaches is to control and minimize field errors

by means of precise fabrication while dealing with steering errors (imparting of net

transverse momentum to an electron beam) and deflection (imparting a net transverse

displacement to an electron beam) with internal or external trim coils (note: Tecimer and

Elias [8] used poleface shim tuning). These measures, while sucessfiilly employed in full-

sized wigglers, have met with varying degrees of success in most of the above mentioned
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designs, yielding errors of order several percent RMS spread in the amplitudes of the

wiggler field peaks, as well as uncompensated end effects (notable exceptions being Ben-

zvi et. at [7], having attained field errors of order 0.28%, and Tecimer and Elias [8]

having achieved 0.2%: see Table 1).

In contrast, we have constructed a 70-period planar microwiggler, having period

8,8 mm, which employs extensive tuning to accomplish field error reduction. Each half-

period is independently adjustable, permitting great control over the amplitude profile,

Also, we have ,,,'eloped a coil/ferrocore geometry permitting pulsed operation at high

peak field amplitudes (4.2 kG) at experimentally useful repetition rates (>1/2 Hz). The

design is an outgrowth of our earlier work [9]. We used amplitude tuning to produce a

70-period microwiggler with 0.12% RMS spread in the peak amplitudes, the lowest value

we are aware of in a sub-cm-period wiggler.

This paper describes the construction of the microwiggler, as wel! as the magnetic

field measurements which aemonstrate its high field precision. We also describe the

method employed for achieving efficient and accurate adjustment of the 140 degrees of

freedom afforded by the extensive tunability of the microwiggler. In our conclusions, we

c-stimate the performance limits of our design.

Section 2 describes the construction of the microwiggler. Field measurements are

presented in Section 3. Section 4 describes the method employed to tune the

microwiggler. Conclusions are presented in Section 5.
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2. Construction of the microwiggler

The microwiggler is a 70-period device with an 8.8 mm period and a 4.2 mm gap,

consisting of 280 electromagnets held by a precisely formed aluminum matrix. Figure 1

illustrates the geometry of the microwiggler (and the coordinate axes used to describe the

wiggler geometry); Figure 2 is a photograph of the microwiggler. Each electromagnet is

formed from wire wound on a core consisting of six Microsil laminations of dimension

12.7 x 25.4 x 0.35 mm (29 gauge). Microsil was chosen in favor of more exotic materials

(like vanadium permendur) because of its extremely low cost and ready availability, and its

very small hysteresis and remnant fields. A very high degree of uniformity was achieved in

the thickness of the laminated cores: the thicknesses of all 280 cores lay within a range

between 2.101-2.106 mm. This precision was attained by sorting 2000 individual laminates

according to thickness, and then judiciously selecting sets of laminates having the proper

total thickness. Figure 3 shows an individual electromagnet, each of which was hand-

wound with 50 turns of 32 AWG Formex wire.

The individual coils are placed in two aluminum holder pieces to form a v,; gler

configuration. Each holder consists of a bar fashioned from aluminum jig-plate stock with

140 slots cut perpendicular to the longitudinal axis of the bar: each slot accomodates an

individual electromagnet. The two aluminum holder pieces lie on each side of the wiggler

gap, and are alij'red by a pin-and-socket arrangement at each end of the holders.

The coil holders were manufactured with considerable precision. Neither the width

nor the cumulative (axial) positional error of any of the 140 coil holder slots in each holder

exceeds 0.01 mm. The gap separation is determined by the aluminum holders. Figure 4 is a

section drawing showing the assembly of the wiggler halves, drift tube, etc. The

rectangular electron drift tube consists of a 75 cm length of 0.25 mm-wall-thickness
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stainless steel K. band waveguide, with stainless mini-CONFLAT flanges braised onto

each end. Longitudinal slots cut into each end of the magnet holders secure the drift tube

position. The transverse position of the drift tube is also very well-fixed by the polefaces;

this is crucial because the pickup coil probe for magnetic field measurements takes its

position via a slip fit inside the drift tube. Measurement of the relative height of each of the

280 polefaces shows that the highest polefaces are randomly distributed through the

wiggler, and that they fix the transverse (y) position of the drift tube to better than 20

microns. Drift tube wall thickness variations thus yield as much (or more) drift tube

position error as poleface height variations.

Two electromagnets facing across-gap from one another comprise a half-period,

and are connected in parallel to ground and to the current source through a tuning

resistor. Figure 5 illustrates this arrangement schematically. The wiggler circuit consists of

140 half-period pairs, connected in parallel to the current source. Tuning is accomplished

by means of variable resistors. They consist of 22 AWG manganin wires, the lengths of

which are varied to adjust their resistances. Tuning of the microwiggler therefore

consisted of adjusting the value of 140 resistors in a resistive current divider network.

Care was taken to energize the microwiggler with pulses of long duration (880 psec)

compared to the (LfR) time of the microwiggler (about 60 psee), to ensure that the

impedance of the various half-period circuit elements remained primarily resistive.

2. Field measurements

The measured peak amplitudes of our microwiggler are plotted in Fig. 6, as a

function of peak number, before and after tuning. Two peaks at each end are tapered for

minimal beam steering and deflection. A zero-steering POISSON model was generated,

and the amplitudes obtained therefrom were tuned into the ends of the Microwiggler. For
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these and all other measurements described in this section (the saturation data excepted),

the microwiggler was operated at a repetition rate of 1/2 Hz, and energized with

underdamped half-sine waves of half-period 880 psec. The mean field amplitude was 4.2

kG.

The RMS spread in the peak amplitudes, excluding the ends of the magnet, is

0.12%. This fact is by itself inadequate to establish that the RMS spread in the pole

integrals (i.e., the areas under the BI3 vs. z curve of each half-period) is small, however, and

the RMS spread in the pole integrals is a preferred figure of merit for wiggler field

uniformity. In lieu of a detailed field profile measurement (which our measurement system

could not produce with adequate precision to assess the field uniformity), we measured

the position of each peak, in addition to its amplitude. Figure 7 is a plot of the position

difference of each peak from perfectly equidistant spacing. The RMS spread in the

position errors is 9 gm, or 0.1% of the period. We have found that the correlation function

of the position and amplitude error profiles show no correlation between the position and

amplitude errors, so that we can estimate the RMS spread of the pole integral profile to be

j(0.o0012)2 +(0.o001) = 0.16%.

Additional measurements are required to ensure that ou,, peak amplitude and

position measurements are not significantly affected by possible systematic errors. One

such error could conceivably arise from the fact that the half-periods are wired in parallel

(Fig. 5): variations in inductive impedances among the half-periods could cause variations

in their fields' time dependence. In particular, the effective inductance of the half-periods

at the ends is less than that of half-periods in the body, because of the reduced mutual

inductance of the two end half-periods. Figure 8 is a plot of the relative times, for half-

periods near each end of the magnet, at which the magnetic field reached its peak value. A
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measureable shift occurred at the ends, but only amounts to a part in 10' amplitude

reduction of the end half-periods. The random variations in the time-to-peak of the half-

periods in the magnet body can be shown to result in an RMS field error less than a part in

10'. Thus, the effect of time-to-peak variations is completely negligible.

Another concern is whether the pickup coil probe is actually guided along the axis

of the wiggler. Systematic errors could result were the probe not moving parallel to the

wiggler axis during the peak amplitude measurements. We addressed this concern by using

a probe sensing B, (rather than B,) (see Fig. 1), to measure the position of the field's

cross-gap minimum. In an ideal magnet with such a probe perfectly centered on the z-axis,

no signal would ever be detected. In the real magnet, however, the magnetic field center

and the pickup coil center do not exactly coincide, so that some axial field component of

the wiggler field was sensed by the pickup coil. The signal was directly proportional to the

separation between the pickup coil center and the magnetic center. To obtain maximum

signal from the axial probe, it was positioned near nulls of the By magnetic field

component; the axial component B, is a maximum at those points. Measurements were

taken at each of the 139 transverse field component nulls. Figure 9 shows plots of the

analyzed data and its Fourier transform. Fourier comoonents at spatial frequencies of zero

and 1Il. were removed from these data, since they were due to either a constant offset of

the coil from the mean magnetic center, or a spurious pickup due to the coil being slightly

tilted and thus sensing some magnetic field component By.

The axial probe measurements show an RMS deviation of the magnetic field center

from the pickup coil center of less than 17 microns. This value is conservative, in that it

includes contributions of Fourier peaks which are possibly due to translator error. The

field amplitude RMS variation due to this magnetic center position variation, along the

pickup coil center's axis of travel, is of order
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where k, = 2x/A,,, and, A is the wiggler period, 4,•, is the RMS deviation of the cross-

gap field minimum from the wiggler axis; and B,, is the wiggler field amplitude. This

variance is negligibly small in comparison to the measured RMS spread in the peak

amplitudes of 0.12%. Thus, the magnetic center position variation need not be considered

in the tuning of the transverse field amplitude. It should be emphasized that what was

measured are the differences in position between the magnetic center and the axis of the

magnet bore. There is no way to know from these data whether the bore axis is straight or

not, though the use of strong, precisely-machined I 1/2"-thick aluminum stiffener elements

to enforce straightness of the magnet holders offers reassurance that the holders are

straight to a precision of tens of microns or better. Moreover, the distances of each of the

280 polefaces from a reference plane (the flat backs of the holders) were measured to a

precision of ±3 pm. These measurements determined the cross-sectional area into which

the drift tube is confined. Its position is fixed to within about 10 Pm in the y-direction.

Mechanical tolerances thus ensure that the measurement probe was being borne parallel

the mechanical axis of the magnet, and that the mechanical axis is straight; the data of Fig.

9 show that there is no significant variation of the magnetic axis from the mechanical axis.

The cross-gap minima positions are thus very close to colinear.

A portion of a detailed scan of the wiggler magnetic field profile is shown in Fig.

10, along with a Fourier transform of the entire profile (excluding the periods at each end).

We find that the power spectral density of the second and fourth harmonics are below the

noise level; the third harmonic is down from the fundamental by a factor of about 2.3 x

10-5. This is a very small value, which is advantageous for use in a short-wavelength FEL

oscillator because higher field harmonics cause very short-wavelength incoherent emission
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which can damage optical coatings of resonator mirrors. The measured fifth harmonic is

just above the noise level, at around 6 x 10-6, which is also small.

The measured magnetic field vs. current profile of the microwiggler is depicted ir.

Fig. 11. This curve was used to select the value of the operating peak field (4.2 kG).

These measurements were made with long (16 msec) current pulses injected into a 20-

period subsection, which permitted the use of a Hall probe gaussmeter. The wiggler gap

was 4.4 mm when these measurements were made. It subsequently became possible to

reduce the gap to 4.2 mm (the present value), to boost the wiggler field. The fundamental

component of the wiggler field depends on the wiggler gap G as

-- 10
Boce A. (2)

when G is a substantial fraction of the wiggler period A.. We estimpte that the fields for a

given current are about 4-6% larger with the present smaller gap than the measurements

of Fig. 11. This estimate was confirmed via the integrated (B) pickup coil signal, which

indicated a peak magnetic field of (4.5 ± 0.3) kG.

3. Field measurement and tuning techniques

To attain a precision of 0.12% in the RMS spread of the field peak amplitudes, a

very large number of measurements had to be made to reduce measurement error. A

systematic approach to adjusting the 140 tuning resistors had also to be applied. The

current energizing the wiggler needed to be constantly monitored and adjusted. Manual

control by a human operator was impractical; consequently, we developed a computer-

based system for performing field measurements, monitoring and regulating the

microwiggler's operation, and computing resistor adjustments based on field measurement

results. (B) pickup coils sensed the wiggler magnetic field as well as that surrounding the
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high current bus. The magnetic field pickup coil was of extent I mm x I mm x 5mm in the

axial (z), cross-gap (y) and transverse (x) directions, respectively, and consisted of 8 turns

of 32 AWG Formex copper wire wound in two layers on a rectangular G-10 core. The

current pickup coil was in the Rogowski configuration. The signals were integrated using

analog electronics and the integrated signals were digitized by a PC-based A/D board. The

analog integrator circuits needed to be well-isolated from interference produced by the

pulser. We chose this approach in favor of a Hall probe since the available Hall probe

system lacked the bandwith to accurately capture the magnetic field pulse. Use of a DC

measurement scheme in an attempt to overcome the bandwidth problem was impractical

since the magnet operates in the saturated regime of the ferromagnetic cores (requiring

very high current to reach). The computer extracted the peak values of the integrated

wiggler field and current pulses and recorded them in memory, periodically writing

accumulated sets of shot data to disk.

It should be emphasized that current stabilization was absolutely necessary for

attaining a steady magnetic field amplitude. In the absence of active control, capacitor

conditioning effects lead to current amplitude drifts of several percent over the course of a

day's run; a drift of such magnitude is intolerable. The computer-controlled current

stabilization eliminated the long-term drift, and resulted in an RMS spread in the curfent

peaks over a day's run (>2 x 104 shots) of less than 0.1%. Since the magnet operated in

the saturated regime, this meant that the shot-to-shot jitter and the long-term drift in the

magnetic field amplitude combined to less than 0.03%, an acceptable value. The resulting

jitter/drift in the center frequency of FEL radiation wavelength resulting from the shot-to-

shot field jitter is then of order 0.003%.

The tuning regimen viewed the magnetic field profile as a 140-component vector,

the components of which were the amplitudes of the 140 field peaks. A stepper-motor-
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driven translator pulled the (h) pickup coil through the wiggler drift tube; a holder fitted

to the drift tube supported the pickup coil, and attached to the translator via a length of

stainless steel tubing. The pickup coil leads were brought out of the wiggler through the

stainless steel tubing in twisted pair configuration. Grounded-! hielded twisted-pair cable

brought the signal to the analog integrator.

The magnetic field peaks were measured in sequence. The probe moved in steps of

0.25 mm; 5-7 data points were taken in the vicinity of each peak. Upon sensing a change

in the spatial derivative of the field (as a function of axial position), the computer

recognized that a peak had been found. It moved the probe one more step, took one more

datum and moved the probe several millimeters to the viciniy just before the next peak.

the polarity of the (B) pickup coil probe connections were then reversed (via a relay

network) so that the sign of the electronic pulse presented to the analog integrator

remained unchanged as the polarity of the field changed.

After getting data for a peak, the computer performed a least-squares fit to a

parabola to extract the peak value (a parabola was used because it is an adequate model to

which the data can be rapidly fit), the result was recorded in memory. The sequence of

140 peak measurements was repeated 5-6 times and the results were averaged. Since each

sequence of 140 measurements provided an independent measurement of each peak, we

also computed the standard deviation in the mean of the measurements to obtain an

estimate of the statistical uncertainty in the measurement of each peak. The typical
uncertainty was 0.035%.

Of course, systematic errors must also be controlled. Extreme care was taken in

the construction of the pickup coil probes in order to avoid spurious pickup by the leads

coming out of the magnet bore. The pickup coil and the leads were formed of a single

11



piece of 32 AWG Formex wire. This was necessary because the use of solder junctions

located at the pickup coil to attach the pickup coil to the output leads resulted in an

inadvertent extra pickup loop which acquired significant spurious signal. The output leads

were brought out in a twisted-pair configuration of 1200 turns placed on the 60-cm leads;

longer pitches in the twist were found to result in undesired pickup from the leads.

Moreover, the twisted pair (B) signal cable (from wiggler to integration

electronics/computer) had to be carefully routed away from the pulser to eliminate a false

indicated dipole field component. Care was also taken to avoid creating an inadvertent

pickup loop at the signal cable-pickup probe leads junction, which when made too large

could sense the stray fields from the pulsed power supply. Measurements using various

probe orientations and lead connections were compared in order to identify and eliminate

these problems.

Having precisely measured the field profile, it remains to apply corrections to

reduce the errors. This requires advance determination of a reasonable "target" field

profile, and careful characterization of the effects of making adjustments to the tuning

resistors. Determining an experimentally useful target profile is not trivial: since the field

peaks change shape at the ends of the wiggler, one must relate the measured peak

amplitude to the total integral of the field in the end peaks, In doing so, it is necessary to

account for the fact that the (B) pickup probe has both axial and transverse extent, and so

the measured field at a given point is really the value averaged over the extent of the

probe. We took the approach of tuning a "virtual wiggler" in the POISSON codes, using

a target profile in which the integrals of the first and last half-periods (taken on axis) of the

wiggler were taken to be 1/2 that of half-periods in the body of the magnet (the techniques

used in the virtual wiggler tuning were identical to those outlined below for the actual

magnet). This profile produces zero net steering of an on-axis electron beam. We then

calculated what profile our pickup probe would measure from the virtual wiggler's field by
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computing averages over the pickup coil extent for a dense sample of coil positions. This

profile was then analyzed to compute the amplitudes of the peaks that would be measured

from a zero-steering wiggler field. We found that the first two peaks' measured amplitudes

must be reduced in comparison to those of the body of the wiggler, in the ratio 0.37

0.88: 1.00.

Having found a target tuning profile, the effects of tuning resistor adjustment must

be systematically probed. The known set of necessary field amplitude changes must be

translated into a set of resistor adjustments via a matrix whose components are defined by

M I ) = {change in i"' peak amplitude due to change in j'resistor) (3)

This is a (140 x 140)-component matrix; all of its components are measurable in principle,

but in practice a judiciously chosen subset must be selected. We measured a (1 I x 11)

matrix using the first eleven peaks of the wiggler, in order to capture the ends' behavior

while proceeding far enough into the wiggler bulk to accurately characterize it. The

measured matrix was then extended to full dimension by assuming symmetry about

wiggler center and neglecting effects of resistor adjustments more than 3 peaks away from

a given resistor. A change in the field profile vector (AD) is then produced by a resistance

adjustment vector (A-) according to the matrix equation

A, = AR (4)

where the desired (AR) can be computed from the measured (AB) field differences from

the target profile and the measured (49 1 A) response matrix. This procedure amounts to

a Taylor expansion to linear order of the magnetic field amplitude profile vector as a

function of the tuning resistor values, about the initial value of the field amplitude profile
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vector (typical tuning resistances are roughly 5-10% of the coil resistances). Of course,

our use of ferrocore electromagnets in the saturated regime ensures that, for sufficiently

large changes in the tuning resistors, nonlinear variations in the field would be produced.

Nevertheless, iterative application of the procedure rapidly converged to the measurement

precision limit. Only 3 iterations were required to reduce the RMS spread in the peak

amplitudes from the untuned value of 4% to a value of 0.12%.

4. Comments and conclusions

A tunable electromagnet wiggler was used in the first free electron laser [ I I ], so

that wiggler tunability is by no means a new concept. However, ours is the first device of

which we am aware in which many tens of degrees of freedom have been systematically

and efficiently exploited. In only a handful of iterations, our novel tuning algorithm

produced a uniform-amplitude field profile (with end-tapering) with an RMS spread in the

peak amplitudes of 0.12%, the most precise sub-cm-period wiggler field to date. Table I

compares our microwiggler with some other recently-reported short-period wigglers.

Reduction in the RMS spread of the pole integrals to the 0.05% level is readily

achievable in our device. This would be comparable to the world's most uniform periodic

magnetic field, but at 1/3 the wiggler period- a formidible achievement. An improvement

in the uniformity of the untuned profile would be required in order to reduce the

magnitude of certain of the tuning resistances, but such an improvement could be made

using a technique employed in samarium cobalt wigglers [12]: the individual

electromagnet coils could each be tested and sorted according to their field strengths

produced by a standard input current. Coils with field strengths outside a specified range

could be re-wound. The coils would then be re-installed in order of increasing or

decreasing strength, according to whether or not a particular order would be preferred to

14



implement a possible field tapering scheme. In this fashion, random error is transformed

into systematic variation and the total spread in the peak fields' values is reduced. Also, we

are at this writing in the process of converting to a pole integral measurement scheme

using our present electronics, and anticipate similar precision to the peak amplitude

measurements will be attained (0.035%), which is adequate to enable attainment of 0.05%

RMS spread in the pole integral profile.

In conclusion, we have constructed and operated a ferromagnetic-core based

electromagnet wiggler having 70 periods of 8.8 mm and a gap of 4.2 mm, producing an

on-axis wiggler field of 4.2 kG in 0.5 msec pulses at a repetition rate of 0,5 Hz. We claim

that the field produced has the smallest RMS spread in the peak amplitudes, 0,12%, and

the smallest spread in the pole integrals, 0.18%, of any sub-cm-period wiggler yet

reported. We have performed an extensive battery of measurements to support this claim.

Our microwiggler is presently being used in a visible- and UV-wavelength FEL oscillator

experiment at the Accelerator Test Facility, Brookhaven National Laboratory.
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Figure Captions

Figure 1. Microwiggler geometry. Coordinate axes are shown. Current flow in adjacent

coils have opposite handedness, while current flow in cross-gap pairs have the same

handedness. Parameter values: ;, 8.8 mm, G = 4.2 mm, T = 3.1 mm, W = 2.3 mm. Note

that the gap shown is larger than in the actual design.

FIGURE 2. The microwiggier. The high-current busswork (top) delivers 12 kA in 0.5

msec pulses, which is distributed by the current distribution network. Current is delivered

to each of the 280 coils by way of a 22 AWG twisted pair.

FIGURE 3. An individual electromagnet. The side view on the left shows a core without

windings, to better illustrate the structure of the core/endpiece assembly. The mylar sheet

is indispensible: in tests, fully half of coils made without it were electrically shorted to the

core, a catastrophic failure rate.

FIGURE 4. Wiggler assembly section drawings. The top view shows how the holders,

coils, and drift tube are assembled. The bottom view illustrates the installation of the coils

into the aluminum holders.

FIGURE 5. Schematic of the pulsed power supply for the microwiggler.

FIGURE 6. Untuned (upper plot) and tuned (lower plot) peak amplitude profiles of the

Microwiggler. The ranges and scales of the two plots are identical; very clearly, tuning has

greatly reduced peak amplitude variations. The tuned profile also shows the tapering of

the end peaks.
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FIGURE 7. The measured positions of the peaks, with respect to their ideal, equidistant

separations. The Fourier transform power spectral peaks indicated in the bottom plot are

peaks due to translator error.

FIGURE S. Time to peak of the magnetic field at half-periods at each end of the

Microwiggler. The field at the end half-periods reaches a peak about 20 Psec later than the

field at peaks in the magnet body. In both plots the measurements are connected by lines,

to guide the eye.

FIGURE 9. The position of the wiggler magnetic field y-minimum (magnetic center) as a

function of axial position z (top plot), and the Fourier power spectrum of the magnetic

center position profile. We suspect two peaks in the power spectrum to be due to

translator error, they are indicated in the bottom plot.

FIGURE 10. Detailed measurement of the axial field profile, and its Fourier transform

power spectrum. The top plot is a portion of the profile measurements near the end of the

magnet. The bottom plot is the power spectrum of the central 66 periods. Th• first, third,

and fifth harmonics are indicated: harmonics beyond the fifth are obscured by noise.

FIGURE 11. Microwiggler field as a function of input current. These measurements were

obtained with a Hall probe gaussmeter with the wiggler gap G = 4.4 mm. The gap was

subsequently reduced to 4.2 mm to increase the field strength: the field at the operating

current of 45 amperes per coil is now about 4.2 kG.
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Table 1: Comparison of some short-period wigglers

GROUP TECHNOLOGY #PER. Xw/mm Bw/kG PEAK POLE
AND STATUS G/mm RMS INT.

ERROR ERROR

Stoner et. al.
MIT Pulsed ferrocore 70 8.8/4.2 4.2 0.12% 0.18%

electromagnet;
operational

Huang et. al.
Stanford Staggered ferro- 50 10.0/2.0 10.8 1.2% Not

core array in reported
solenoid; test

Warren and
Fortgang Permanent 73 13.6/1.5 6.5 0.3% Not

LANL magnet; reported
operational

Tecimer and
Elias Hybrid; test 62 8/Not 1.0 0.2% 0.6%

CREOL reported

Ben-zvi et.
al. Superconducting 20 8.8/4.4 >5.5 0.29% 0.36%

BNL ferrocore electro-
magnet; test
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